

ISSN: 2320-3730

Vol-12 Issue-02 OCT 2023

# Results from 32 dogs who had tibial plateau leveling osteotomy for rock back syndrome M. ABDUL KHADER

This research was out to assess how the tibial plateau angle (TPA) changed in the time after a tibial plateau leveling osteotomy (TPLO) procedure in canines. At three different points before, during, and after the healing of the osteotomy site, the total postoperative blood flow (TPA) was determined in 32 dogs. At the time of assessment, three assessors measured TPA three times for each subject. Alterations to TPA were detected during bone healing  $(2.05 \pm 3.05^{\circ})$ , although there was no statistically significant difference between TPA3 and TPA1. When comparing TPA1, TPA2, and TPA3 inter-observer readings, no substantial differences were found (P > 0.05). A weak positive connection was seen when the preoperative TPA1 and the rock back were compared (S = 4,735.9, P = 0.471 5, r = 0.131,976). During the bone healing process, there was a weak positive connection (S = 4,581.8, P = 0.381, r = 0.160 234.7) between body weight (kg) and the change in TPA. While variations in TPA were seen during bone healing, these changes were unaffected by either the pre- or post-operative TPA, or the patient's weight. There is no relationship between the amount of rotation in the plateau and the extent of the fluctuation in the TPA.

Keywords: CCL, orthopaedic surgery, postoperative complications, TPLO, and TPA

## **INTRODUCTION:**

Cranial cruciate ligament disease (CCLD) is one of the most common causes of pelvic limb lame- ness and is responsible for most surgical proce- dures performed on the stifle joint in dogs (Clarket al. 2020; Won et al. 2020).

A tibial plateau levelling osteotomy (TPLO) represents the best way to treat CCLD, despite more than 5 decades since the first surgical treatment de- scribed for this condition (Barnes et al. 2019; Nanda and Hans 2019; Clark et al. 2020; Vezzoni et al. 2020). The magnitude of the cranial tibial impulseis dependent on the tilt angle of the tibial plateau; therefore, in this procedure, a proximal tibial cir- cular osteotomy is performed, after which the tibi- ofemoral shear force is neutralised during the gait, establishing an angle of the tibial plateau (TPA) suit- able for the dynamic joint stabilisation (Stine et al. 2018; Nanda and Hans 2019).

The angle considered ideal for neutralising

tib- ial translation in relation to the femur is between 5° and 6.5°; however, good clinical results have also been reported in patients with wider margins  $(0^{\circ}$  to 14°) (Warzee et al. 2001; Reif et al. 2002;

 $(0^{\circ} to 14^{\circ})$  (warzee et al. 2001; Reff et al. 2002; Nanda

#### and Hans 2019).

The postoperative TPA value is considered fun-damental for the success of the procedure, andthere should not be any excess rotation or an in-sufficient rotation (Nanda and Hans 2019). It is also known that the TPA achieved in the imme-diate postoperative period can undergo changesuntil the osteotomy of the TPLO consolidates. This phenomenon has been called the "rock back" phenomenon (Bergh et al. 2008; Taylor et al. 2011; Nanda and Hans 2019). This alteration is defined as the movement of the segment of the tibial plateau that occurs along the osteotomy line, causing an in-crease in the TPA of  $\geq 5^{\circ}$ , between the immediatepostoperative period and the subsequent controlradiographs

(Duerr et al. 2008; Moeller et al. 2010). It is suggested that this is a mechanical process, determined



by the secondary loss of reduction. However, the cause of the change in the TPA dur-ing the bone healing is not fully understood (Berghet al. 2008; Moeller et al. 2010; Taylor et al. 2011).

The aim of the present study was to evaluate the

presence and size of the TPA alteration during the bone healing in dogs subjected to TPLO andto determine its correlation with the preoperative TPA, immediate postoperative TPA, and patient body weight.

## MATERIAL AND METHODS

All the procedures described were in compliance with the Animal Use Ethics Commission (CEUA). Thirty-two patients presented at the University Veterinary Hospital – UNESP – Jaboticabal (Brazil) and diagnosed with cranial cruciate ligament disease were included in the study.

The inclusion criteria were the body mass (range 20–46 kg, mean 30.38 kg), age (range 18 monthsto 119 months, mean 63 months old), and completeradiographic follow-up and images appropriate for the TPA measurement. All the patients were assessed for the TPA in the pre-surgical period (TPA<sub>1</sub>), immediate postsurgical period (TPA<sub>2</sub>), and after consolidation of the TPLO osteotomy (TPA<sub>3</sub>). The patients were clinically evaluated in the preoperative and postoperative periods. A subjective gait analysis and a tibial com- pression test were used. To assess the consolida- tion of the osteotomy, radiographs in cranio-caudal

and latero-lateral views were analysed and were considered consolidated when the cortical bones were visually united, as is normally performed in the clinical routine. The influence of the body weight of each patient was correlated to the changes in the TPA during the bone healing.

The angles of the tibial plateau were measured using medio-lateral radiographs, with the affected limbs positioned with the stifle and tarsus main- tained at 90° of flexion and the tibia was maintained parallel to the radiographic

## ISSN: 2320-3730

## Vol-12 Issue-02 OCT 2023

cassette, without any femoral or tibial rotation, in order to facilitate the overlapping of the femoral, tibial condyles, and joint alignment, following the guidelines previ- ously described by Slocum and Slocum (1993) and Dismukes et al. (2008). To determine the TPA, two lines were drawn: a) the line which connects the cranial and caudal extensions of the medial tibial condyle and determines the axis of the tibial pla- teau and b) the line that connects the point which divides the tibial intercondylar tubercles (cen- tre of the tibial intercondylar eminence) and the centre of rotation of the talus and determines the mechanical axis of the tibia in the sagittal plane (Figure 1A). The TPA is measured at the in- tersection of the line of the tibial plateau with the line of the mechanical axis of the tibia (Figure 1B) (Dismukes et al. 2008).

To minimise errors due to the variability in the

subjective evaluation, three observers with expe- rience, both with the measurement and the pro- cedure, evaluated the radiographs and performed the measurements for each patient at each time of the evaluation.

Each observer performed 3 measurements for each image, with a minimum time interval of 3 days between the assessments, thus avoiding a sugges- tive memory when selecting the anatomical ref- erence points. The observers randomly evaluated the images, and were blinded to the clinical details of the cases. In addition, all the measurements weremade on digital radiographs, using computer pro- grams to facilitate and standardise the measure- ment of the TPAs (RadiAnt DICOM Viewer 64bit, Poznań, Poland).

For comparisons between the values obtained for the TPAs between the three observers, the data was submitted to a Shapiro-Wilk test to ascertain whether the data was normally distributed, and to a Bartlett test to ascertain whether they had equal variances. For the inter-observer comparison https://doi.org/10.17221/128/2020-VETMED

F or tile.59



(A) Demarcation of the line of the tibial plateau (a) and the mechanical axis of thetibia (b). (B) Measurement of the tilt angle of thetibial plateau

the data referring to the TPA<sub>3</sub> measurements, an analysis of variance test (ANOVA) was used for the measurement, followed by Tukey's post hoc analysis. To verify the inter-observer difference in the data referring to TPA<sub>1</sub>, TPA<sub>2</sub>, and the altera- tion of the TPA during the bone healing ("rock back" phenomenon), a Kruskal-Wallis test was used, fol- lowed by Dunn's post hoc test. The Shapiro-Wilk test was applied on the arithmetic mean calculated from the data obtained from each observer for TPA<sub>2</sub> and TPA<sub>3</sub> to determine whether they were normally distributed. Student's t-test was used to compare the data obtained for TPA<sub>2</sub> and TPA<sub>3</sub>. Pearson's correlation was used to assess the pos- sible correlation between the TPA changes during the bone healing and TPA<sub>1</sub>, whereas

#### ISSN: 2320-3730

## Vol-12 Issue-02 OCT 2023

Spearman's correlation was used to assess the possible corre- lation between the TPA changes during the bone healing and TPA<sub>2</sub> and the TPA changes during the bone healing and the patient body weight. RESULTS The distribution of the breeds for these thirty-two dogs was as follows: mixed breed (9), English Bulldog(5), Rottweiler (3), Golden Retriever (3), Akita (1), American Staffordshire Terrier (2), German Shepherd (1), Malinois Shepherd (1), Staffordshire Bull Terrier (1), American Pitbull (1), Boxer (1), Fila Brasileiro (1), Border Collie (1), and American Bully (1). The average age of the animals was 5 years and 3 months (range, 1 year and 6 months to 9 years and 11 months). The average body weight was 30.38 kg (range, 20–45.4 kg). Females comprised 68% (26) of the total subjects and the right joint was involved in 53.12% (17) of the cases. The means of the intra- and inter-observer measurements of the TPA<sub>1</sub>, TPA<sub>2</sub>, and TPA<sub>3</sub> for each patient are shown in Table 1. The general and per-observer results of the general mean of the TPAs, the respective standard https://doi.org/10.17221/128/2020-VETMED

| Animal | Image            | TPA (°) | Animal | Image TPA (°)    |       | Animal Image | TPA (°)          |       |
|--------|------------------|---------|--------|------------------|-------|--------------|------------------|-------|
|        | $TPA_1$          | 25.07   |        | $TPA_1$          | 28.76 |              | $TPA_1$          | 28.04 |
| 1      | $TPA_2$          | 12.92   | 12     | $TPA_2$          | 8.04  | 23           | TPA <sub>2</sub> | 12.73 |
|        | TPA <sub>3</sub> | 16.07   |        | TPA <sub>3</sub> | 9.02  |              | TPA <sub>3</sub> | 18.05 |
|        | TPA <sub>1</sub> | 29.40   |        | TPA <sub>1</sub> | 31.47 |              | $TPA_1$          | 23.97 |
| 2      | TPA <sub>2</sub> | 11.23   | 13     | TPA <sub>2</sub> | 12.13 | 24           | TPA <sub>2</sub> | 10.09 |
|        | TPA <sub>3</sub> | 11.27   |        | TPA <sub>3</sub> | 14.34 |              | TPA <sub>3</sub> | 11.41 |
|        | TPA <sub>1</sub> | 29.16   |        | TPA <sub>1</sub> | 28.04 |              | TPA <sub>1</sub> | 27.61 |
| 3      | TPA <sub>2</sub> | 7.74    | 14     | TPA <sub>2</sub> | 7.58  | 25           | TPA <sub>2</sub> | 8.02  |
|        | TPA <sub>3</sub> | 10.74   |        | TPA <sub>3</sub> | 13.19 |              | TPA <sub>3</sub> | 7.13  |
|        | $TPA_1$          | 27.53   |        | TPA <sub>1</sub> | 24.97 |              | TPA <sub>1</sub> | 23.35 |
| 4      | $TPA_2$          | 5.51    | 15     | TPA <sub>2</sub> | 10.86 | 26           | TPA <sub>2</sub> | 7.79  |
|        | TPA <sub>3</sub> | 6.59    |        | TPA <sub>3</sub> | 10.79 |              | TPA <sub>3</sub> | 11.92 |
|        | TPA <sub>1</sub> | 31.70   |        | TPA <sub>1</sub> | 24.38 |              | TPA <sub>1</sub> | 22.26 |
| 5      | TPA <sub>2</sub> | 13.54   | 16     | TPA <sub>2</sub> | 8.28  | 27           | TPA <sub>2</sub> | 8.10  |

Table 1. Overall average of the TPAs of each animal, at the time of each assessment (TPA1, TPA2, TPA3)



#### ISSN: 2320-3730

#### Vol-12 Issue-02 OCT 2023

|    | TPA <sub>3</sub> | 16.48 |    | TPA <sub>3</sub> | 13.88 |    | TPA <sub>3</sub> | 9.56  |
|----|------------------|-------|----|------------------|-------|----|------------------|-------|
|    | TPA <sub>1</sub> | 29.59 |    | TPA <sub>1</sub> | 28.72 |    | TPA <sub>1</sub> | 26.04 |
| 6  | TPA <sub>2</sub> | 11.70 | 17 | TPA <sub>2</sub> | 10.81 | 28 | TPA <sub>2</sub> | 4.88  |
|    | TPA <sub>3</sub> | 16.69 |    | TPA <sub>3</sub> | 11.51 |    | TPA <sub>3</sub> | 6.33  |
|    | $TPA_1$          | 17.56 |    | TPA <sub>1</sub> | 21.06 |    | $TPA_1$          | 15.88 |
| 7  | TPA <sub>2</sub> | 4.13  | 18 | TPA <sub>2</sub> | 5.60  | 29 | TPA <sub>2</sub> | 3.30  |
|    | TPA <sub>3</sub> | 8.42  |    | TPA <sub>3</sub> | 6.96  |    | TPA <sub>3</sub> | 3.36  |
|    | $TPA_1$          | 22.77 |    | TPA <sub>1</sub> | 20.01 |    | TPA <sub>1</sub> | 23.24 |
| 8  | TPA <sub>2</sub> | 4.67  | 19 | TPA <sub>2</sub> | 6.13  | 30 | TPA <sub>2</sub> | 0.4   |
|    | TPA <sub>3</sub> | 5.80  |    | TPA <sub>3</sub> | 6.50  |    | TPA <sub>3</sub> | -0.66 |
|    | TPA <sub>1</sub> | 26.29 |    | TPA <sub>1</sub> | 27.23 |    | TPA <sub>1</sub> | 25.86 |
| 9  | TPA <sub>2</sub> | 0.92  | 20 | TPA <sub>2</sub> | 9.52  | 31 | TPA <sub>2</sub> | -0.49 |
|    | TPA <sub>3</sub> | 1.93  |    | TPA <sub>3</sub> | 8.87  |    | TPA <sub>3</sub> | 5.77  |
|    | $TPA_1$          | 22.77 |    | TPA <sub>1</sub> | 28.56 |    | TPA <sub>1</sub> | 24.51 |
| 10 | TPA <sub>2</sub> | 8.90  | 21 | TPA <sub>2</sub> | 8.62  | 32 | TPA <sub>2</sub> | 9.34  |
|    | TPA <sub>3</sub> | 9.92  |    | TPA <sub>3</sub> | 13.29 |    | TPA <sub>3</sub> | 10.93 |
|    | TPA <sub>1</sub> | 28.07 |    | TPA <sub>1</sub> | 29.23 |    |                  |       |
| 11 | TPA <sub>2</sub> | 9.08  | 22 | TPA <sub>2</sub> | 10.74 |    |                  |       |
|    | TPA <sub>3</sub> | 10.62 |    | TPA <sub>3</sub> | 11.64 |    |                  |       |

 $\overline{\text{TPA}}$  = angle of the tibial plateau;  $\overline{\text{TPA}}_1$  = preoperative;  $\overline{\text{TPA}}_2$  = immediate postoperative;  $\overline{\text{TPA}}_3$  = after the osteotomy consolidation deviations, and the change in the TPA during thebone healing are shown in Table 2. There were no significant differences in the in-ter-observer measurements in relation to  $\overline{\text{TPA}}_1(P = 0.76)$ ,  $\overline{\text{TPA}}_2(P = 0.8394)$ , and  $\overline{\text{TPA}}_3(P = 0.331)$ .

The change in the TPA during the bone healing process was not found to be statistically significant (P = 0.161 4). The results of Student's *t*-testhttps://doi.org/10.17221/128/2020-VETMED

Table 2. Overall and per-observer average of the TPA<sub>1</sub>, TPA<sub>2</sub>, TPA<sub>3</sub> and the change in the TPA during the bone healing

| Observer        | TPA <sub>1</sub> | TPA <sub>2</sub> | TPA <sub>3</sub> | Alteration of TPA during bone healing |
|-----------------|------------------|------------------|------------------|---------------------------------------|
| 1               | $26.21 \pm 4.18$ | $8.13 \pm 4.81$  | $10.70\pm5.42$   | $2.57\pm3.85$                         |
| 2               | $25.24 \pm 4.26$ | $7.72\pm4.74$    | $8.90 \pm 5.36$  | $1.17 \pm 3.13$                       |
| 3               | $25.70\pm3.85$   | $7.83 \pm 3.13$  | $10.23 \pm 4.06$ | $2.40\pm2.18$                         |
| Overall average | $25.72\pm4.10$   | $7.89 \pm 4.23$  | $9.94 \pm 4.95$  | $2.05\pm3.05$                         |

TPA = angle of the tibial plateau;  $TPA_1$  = preoperative;  $TPA_2$  = immediate postoperative;  $TPA_3$  = after the osteotomy consolidation for the comparison between the data obtained for  $TPA_2$  (7.896 174 ± 3.631 199) and  $TPA_3$  (9.947 049 ±

4.310 051) showed that there was no statistically significant difference between the final TPA after the osteotomy consolidation of the TPLO, and the TPA reached in the immediate postoperative period (P = 0.438 7). There was a low positive correlation between the TPA<sub>1</sub> values and the "rock back" phenomenon (S = 4 735.9, P = 0.471 5, r = 0.131 976 9), along with a low positive correlation between the values of the body weight and the change in the TPA during the bone healing (S = 4 581.8, P = 0.381, r = 0.160 234 7).



#### DISCUSSION

This research sought to identify the frequency and intensity of the secondary loss of the fragment rotation and the potential factors affecting it; and the consequent alteration of the postoperative TPA. An even better understanding of this complication, which is probably under-diagnosed and has effects that are not yet fully understood, was sought (Bergh et al. 2008; Taylor et al. 2011).

TPLO reduces the magnitude of the cranial tibial impulse as the angle of the tibial plateau is reduced with the rotation of the osteotomised fragment, dy-namically stabilising the stifle joint (Slocum and Slocum 1993). It is already known that a certain variation in the postoperative TPA is acceptable, and capable of providing satisfactory results, con- trary to the initial guidelines that the final angle should be between 5° and 6.5° (Slocum and Slocum 1993; Warzee et al. 2001). Of the thirty-two cas-es evaluated in our study, only three (9.3%) cases reached a TPA between 5° and 6.5° after the TPLO (TPA<sub>2</sub>), with the average of the immediate postop- erative TPAs being 7.9°, with a variation of  $-0.49^{\circ}$  to  $13.54^{\circ}$ . Even with a wide variation in inclination degrees of the tibial plateau, there was sufficient cancellation of the cranial tibial displacement, sta- bilisation of the joint, and a good functional return of the limb in all the cases.

Such findings are consistent with previous studies and support the idea that the "ideal" TPA has not yet been determined (Warzee et al. 2001) or at leasta wider or different variation may be acceptableas well. It has been previously shown in another study that there is no statistically significant dif- ference between postoperative TPAs ranging from 0° to 14° when subjected to soil reaction forces (Robinson et al. 2006). It was observed that thirty- one (96.87%) of the cases in this study were within the range of 0–14 degrees. In the same way that the excessive rotation of the tibial plateau increases the caudal tibial dis- placement and the tension on the caudal cruciate ligament, an insufficient rotation may not eliminate the cranial tibial displacement and does not solve the clinical dysfunction (Warzee et al. 2001; Reif et al. 2002). In addition, the TPA

#### ISSN: 2320-3730

#### Vol-12 Issue-02 OCT 2023

reached in the immedi- ate postoperative period may undergo changes until the consolidation of the TPLO osteotomy, a phe- nomenon called the "rock back" of the tibial plateau (Bergh et al. 2008; Taylor et al. 2011). In our study, the change in the TPA during the bone healing was present with a variation of  $2.05^{\circ} \pm 3.05^{\circ}$ ; however, it was not statistically significant when compared to the TPA reached in the immediate postoperative period. The average time for the radiographic verifi- cation was 128 days (range, 60–455 days). According to a study by Moeller et al. (2006) the mean change in the TPA from the immediate postoperative peri- od up to 46 days (6.5 weeks) after the TPLO was 1.5°. However, the actual change in the TPA may be high- er, as only 73.2% of the patients evaluated in their study had a bone consolidation of the osteotomy at the time of evaluation. In the study by Conkling et al. (2010), the mean change in the TPA was 1.9° which is similar to the results found in our study and those found by Moeller et al. (2006). However, the average time for the radiographic verification was 60.5 days (8.6 weeks), with no further changes likely.

The low positive correlation between the change in the TPA during the bone healing and the TPA<sub>2</sub> observed in this study shows that even with a vari- ation of -0.49° to 13.54° in  $TPA_2$ , the change in the TPA during the bone healing was not proportion-al to the degree of rotation of the tibial plateauby the TPLO. A similar low positive correlation be- tween the presurgical inclination of the TPA and the change in the TPA during the bone healing means that preoperative TPAs from 15.88° to 31.70° did not interfere or cause greater regression of the TPA until the bone consolidation. Further studies are needed to determine whether higher preoperative TPAs have a determinant correlation with the change in the TPA during the bone healing.

Another factor that can potentially interfere with the alteration of the rotation of the tibial plateau after the TPLO is the load exerted by the patient's weight on the stifle joint during the gait support phase, in the period of the bone consolidation. The low positive correlation between the changein the TPA



during the bone healing and the pa- tient's weight led us to conclude that the patient's body weight, after a rigid stabilisation, did not com- promise the rotation of the tibial plateau and the joint stabiliser.

The cause of this complication remains to be inves-tigated, and studies report that a change in the TPA after surgery is likely to occur due to the secondary loss of reduction or an incorrect implant fixation (Conkling et al. 2010). Several models of dedicated plates have been developed in recent years, most of them with locking systems at a fixed angle be- tween the screws and the plate, which should reduce the factors affecting the results related to the im- plant (Leitner et al. 2008; Conkling et al. 2010; Kowaleski et al. 2013). On the other hand, the inadequate positioning of the osteotomy or an incom- patibility between the rigid implant and a relatively soft bone (metaphyseal bone) may be associated with the alteration of the TPA (Bergh et al. 2008; Tayloret al. 2011). Changes in the positioning, laxity, osteolysis, or implant failure were not observed in any of the cas-es in this study when the radiographs of the immedi- ate postoperative period were compared with those after consolidation of the osteotomy. In all the cases, the bone healing occurred without any major com-https://doi.org/10.17221/128/2020-VETMED

plications. In this study, all the used implants hada lock between the plate and screws. It is believed that this may have helped to minimise any possible complications (Conkling et al. 2010). Thus, an in-triguing inference emerges from these facts, that al- though underdiagnosed, the loss of angulation may not be clinically relevant in patients who are well managed surgically, since there seems to be a wider safety range for the final TPA. The satisfactory re- sults of TPLOs with insufficient or excessive rotation, indistinguishable from the result of dogs with acceptable postoperative TPAs, may indicate that the complete elimination of the cranial tibial impulse *in vivo* can be achieved in a wide range of angles (Moeller et al. 2006; Robinson et al. 2006).

#### ISSN: 2320-3730

#### Vol-12 Issue-02 OCT 2023

The lack of significant variability in the inter-observer measurements in this study shows that the observers' experience did not interfere with the val- ues obtained. A study by Fettig et al. (2003) did notidentify a significant difference in the TPA meas- urements between three groups of observers, when separated by the observer's experience, but assumed a difference in the ability to select the points for the measurements in the normal patients and dogs clini- cally affected by the rupture of the CCLD, as they have varying degrees of degenerative joint disease (DAD) (Fettig et al. 2003). On the other hand, Cayloret al. (2001) assessed the variability of intra- and interobserver measurements of the TPA measurements on the lateral radiographs of dogs, and observed an intra-observer variability of  $\pm 3.4^{\circ}$  and inter- observer variability of  $\pm 4.8^{\circ}$ , with significant differ- ences between the two experienced observers and the inexperienced observer.

The inclination of the pre-surgical tibial plateau

of the animals with a CCLD disease evaluated var-ied from 15.88° to 31.70°, with a general average of 25.72°. Our results are similar to those found previously by Cabrera et al. (2008) and Fettig et al. (2003). In the study by Fettig et al. (2003) the meas- urement of the TPA was not affected by the age or body weight of the animal, but the presence of the DAD, especially at the caudal point of the tibi- al plateau, had a significant correlation with the vari- ability of the TPA measurements between and within the observer.

Although all the evaluated cases had a complete bone consolidation, one of the limitations of this study was the relatively short evaluation time of an average of 128 days. A longer follow-up period would be of great value in determining the impor-ance of the complete assessment of these angles and in investigating the possible causes of the TPA alteration over a longer term. The change in the TPA during the bone

healing, although present, was not significantly determined by the preoperative and immediate postoperative TPAs, nor by the patient's body weight. Although it was a short follow-up, it is



concluded that the inten- sity of the change in the TPA during the bone healing is not determined by the previous tilt of the tibial plateau, by a greater or lesser rotation of the tibi-al plateau by the TPLO and that the load exerted by the patient's weight on the stifle, after the rigid stabilisation by the TPLO, does not determine the compromise of the tibial plateau rotation and joint stability.

Conflict of interest The authors declare no conflict of interest.

## REFERENCES

Aulakh K, Takawira C, Faludi A, Liu CC, Rademacher N, and Lopez MJ were the authors of the study. Canine tibial plateau leveling osteotomy patients report an improvement in short-term limb usage after extracorporeal shock wave treatment. The published version of this article is "Vet Surg. 2019 Nov;48(8):1382-90.".

Kumar AK, Rajala-Schultz MS, and Bergh MS. Factors that increase the likelihood of a tibial tuberosity fracture after a plateau leveling osteotomy in dogs. Jun 2008, Vet Surg, 37(4): 374–82..

Kass PH, Cabrera SY, Owen TJ, Mueller MG. Analysis of 150 instances (2000–2006) of unilateral and bilateral cranial cruciate ligament rupture in dogs: tibial plateau angles compared. Mar 2008, JAVMA 232(6): 889– 92..

Moore RW, Caylor KB, Zumpano CA, and Evans LM. Dog lateral radiographs for measuring the tibial plateau slope: intra- and interobserver variability. Journal of the American Veterinary Hospital Association. 2001 May–June;37(3):263–8.

Arnold CA, Greco JJ, and Bergman PJ. A retrospective analysis of 308 dogs examined the effect of post-operative antibiotic treatment on surgical site infections after tibial plateau leveling osteotomy. Animal Surgery. 2020 January;49(1):106-13.

## ISSN: 2320-3730

## Vol-12 Issue-02 OCT 2023

Researchers: Conkling AL, Fagin B, and Daye RM. Study comparing the effects of traditional and locking screw techniques on the angle of the tibial plateau after tibial plateau leveling osteotomy anchoring. Dismukes DI, Tomlinson JL, Fox DB, Cook JL, and Witsberger TH published a study in the Journal of Veterinary Surgery in June 2010 with the article number 39(4):475-81. Canine sagittal tibial angle assessment using radiography. "Animal Surgery" (April 2008) 37(3): 300–5.This article is cited as https://doi.org/10.17221/128/2020-VETMED.

Drs. Duerr, Duncan, Savicky, Park, Egger, and Palmer were the authors of the study. An analysis of surgical possibilities for the treatment of cranial cruciate ligament disease in large-breed dogs with an abnormally high tibial plateau angle. Jan 2008, Vet Surg, 37(1): 49-62..

This work was authored by Fettig AA, Rand WM, Sato AF, Solano M, McCarthy RJ, and Boudrieau RJ. The tibial plateau slope measurement in forty dogs without a cruciate ligament was shown to be subjectively variable. Veterinary Surgery. 2003 September–October;32(5):471–8. Members of the research team include Kowaleski, Boudrieau, Beale, Piras, Hulse, and Johnson (Kai). Tibial plateau leveling osteotomy with anatomically shaped locking bone plate: radiographic results and complications. Veterinary Surgery. 2013 Oct;42(7):847-52. Leitner M, Windolf M, Schmidt K, Zeiter S, Schawalder P, Pearce SG, Johnson KA. After a locking tibial plateau leveling osteotomy plate has been implanted, the biomechanical stability and location of the plateau may be maintained by comparing it to traditional screws. Research in Veterinary Surgery. 2008 Jun:37(4):357-65.

Rapoff AJ, Moeller EM, Cross AR. The angle of the canine tibial plateau changes after a leveling osteotomy. Muller EM, Allen DA,

ISSN: 2320-3730



Vol-12 Issue-02 OCT 2023

Wilson ER, Lineberger JA, and Lehen-bauer T. published a study in the Journal of Veterinary Surgery in 2006 July;35(5):460-4. Results of lameness, restricted shin mobility, and thigh circumference after a unilateral tibial plateau leveling osteotomy over the long term. Veterinarians' Clinical Orthopaedics and Traumatology. 2010;23(1):37-42.

A Nanda and an EC Hans. Canine cruciate ligament rupture treated with tibial plateau leveling osteotomy: results and patient selection. Auckland Veterinary Medicine. Dec 27, 2019;10:249–55.

Hauptman JG, Reif U, and Hulse DA. In vitro investigation of the canine cruciate-deficient stifle joint stability as a result of tibial plateau leveling. Mar-Apr 2002;31(2):147-54; published in Vet Surg.

Jefferson R, Conzemius MG, Mason DR, and Robinson DA. In Labrador Retrievers, the angle of the tibial plateau affects the ground reaction forces 4–17 months after the osteotomy. "Vet Surg" (April 2006) 35(3): 294–99.

Robert Slocum and Thomas Slocum. A tibial plateau leveling osteotomy is used to repair a ruptured cruciate ligament in the ca- nine. Vet Clin Journal of North American Small Animal Practice, Volume 23, Issue 4, Pages 777–795 (July 1993).

The writers of the article are Stine SL, Odum SM, and Mertens WD. Modifications to the protocol to decrease the incidence of implant-associated infections after tibial plateau leveling osteotomy in 703 dogs and 811 total pelvic openings (TPLO) between 2006 and 2014. (May 2018) Journal of Veterinary Surgery, 47(4): 481-9.

Authors: Taylor, Langenbach, and Marcellin-Little. What are the chances of a fibular fracture after TPLO? Veterinary Surgery. 2011 Aug;40(6): 689-690.